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The problem of a point moving inside a rotating ellipse is considered; collisions at the boundary are assumed to be absolutely 
elastic. It is shown that this discrete dynamical system does not admit of an analytic integral independent of the energy integral. 
The proof of non-integrability is based on the method of separatrix splitting. © 1998 Elsevier Science Ltd. All fights reserved. 

Following Birkhoff [1], we consider a dynamical system with elastic reflections describing the motion of a point 
inside a plane domain D with convex boundary 3D: inside the domain the point moves uniformly along a straight 
line; collisions at the bo~andary are absolutely elastic. In what follows we will call such a system a billiard. As in 
the case of smooth Hamiltonian systems, one can introduce the concept of an integrable billiard. Together with 
the energy integral (the velocity of motion is constant), it is sufficient to know one more independent integral. 
Birkhoff found the integrable case in which the boundary 3D is an ellipse 

The additional integr~l [2] 

x 2 / a 2 + y 2 / b  2 =1, 0 < b  2 ~<a 2 

F= .~2 / a  2 + y 2 / b  2 _ (.i.y_ xy)2/(a2b 2) 

(0.1) 

(0.2) 

is obtained from the Joachimsthal integral of Jacobi's problem of geodesics on the surface of a triaxial ellipsoid 
113] by letting one of the axes approach zero. A detailed analysis of the orbits of an elliptical billiard was given by 
Birkhoff himself [1]. 

The elliptical Birkhoft billiard seems to be the only integrable billiard with a regular boundary (for a discussion 
of this conjecture see [1, 2, 4]). On the assumption that the real boundary of the billiard can be continued to a 
complex curve without singularities, it has been proved [4] that an integral which is a polynomial in the velocity 
and independent of the energy exists only for an elliptical billiard. 

Subsequently [5, 6], this problem was considered in a real setting and conditions were sought for the integrability 
of perturbed billiards, that is, with the shape of the elliptical boundary slightly varied. The strongest result in this 
direction has been obtained in [7], where the role of perturbations was taken by boundaries in the shape of an 
algebraic curve, symmetric about the origin. All these papers corroborate the conjecture that a non-elliptical billiard 
is not integrable. The non-integrability proofs in [5-7] are based on the separatrix splitting method, discovered by 
Poincar6. 

Perturbing the boundary is not the only way of perturbing an elliptical billiard. For example, one can consider 
a perturbation in a weal: potential field. Integrability has been proved [8, 9] for a billiard in which the point is 
subject to an elastic force pointing toward the centre of the ellipse or a gravitational force pointing toward one of 
the foci. These results were generalized in [10]. 

One further perturbation of an elliptical billiard has been studied [11]: a charged particle moving in a magnetic 
field of intensity e orthogonal to the plane of the billiard. Up to terms of order c ", the Hamiltonian of this problem 
is identical to that of the problem of a particle moving inside an ellipse rotating about its centre at low angular 
velocity e/2. Numerical computations [11] clearly indicate the stochastization of the orbits for small e ¢ 0. 

The purpose of this paper is to give a rigorous proof of the fact that a rotating elliptical billiard is non-integrable 
for small ~ ;~ 0. 

1. P O I N C A R t ~ ' S  M E T H O D  

Consider  a billiard in an ellipse (0.1) which is rotat ing at low angular  velocity e about  its centre.  
In the intervals between successive impacts the particle moves at a constant  velocity along a straight 
line in a fixed f rame of  reference.  It  is convenient  to change to a moving system Oxyz rotat ing 
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about the z axis at velocity e. Relative to the x, y axes, the equation of the boundary of  the domain 8D 
has the form (0.1). The system has two degrees of freedom; the generalized coordinates are the variables 
x, y. 

Equating the mass of the particle to unity, we write the Lagrangian as 

L = ~ ( k  2 + y2) + e ( ~ -  ky)+ o(e) (1.1) 

The coefficient of e equals the angular momentum K of the particle relative to the point O. Note that 
the Lagrangian (1.1) also describes the motion of a charged particle in a weak magnetic field. The non- 
integrability result established below also holds for that problem. 

Let 

u = k - e y ,  v'=j,+r.x 

be the canonical momenta conjugate to the coordinates x, y. Transform from (1.1) to the Hamiltonian 

H = Ho + e H  I +o(e);  H o = ~ ( u 2 + u 2 ) ,  H l = u y - u  x (1.2) 

When a = b the perturbed billiard is integrable. 

Indeed, the additional integral is the function F = xj, -:~'y + e(x z + y2). It is constant not only on sections of the 
orbit between impacts, but is also preserved in elastic reflection from the boundary, which, when a ffi b, coincides 
with a circle with centre at O. 

We will show that for a # b and small e # 0 a rotating elliptical billiard is a non-integrable dynamical 
system: it does not admit of a non-constant analytic integral on each level surface of  the energy integral 
H = const > 0. The proof is based on using Poincar6's separatrix splitting method [12] (see also [13, 
Chap. 5]). 

If a # b, then for every non-zero value of the total energy the unperturbed system has an unstable 
periodic orbit y of hyperbolic type: the particle moves along the major axis of the ellipse. The multipliers 
y have been calculated [5]; they are k and 1/k where 

X = (a+~/a  2 - b  2 )1 ( a -  a2"~-~-b 2 ) > 1 

Since y is hyperbolic, a family of doubly asymptotic orbits 

t - ->oa( t ) ,  t e R  

exists, where a is a parameter that approaches Y0 indefinitely as t ---> __.-0. As already remarked by Birkhoff 
[1], the orbits oa are made up of segments An, n e Z, which pass successively through the foci of the ellipse. 

We introduce Poincar6's function (throughout what follows, integration will always be performed with 
respect to t from --~ to +**) 

P(a)  = f Ht (o,At))at  (1.3) 

This improper integral will certainly converge if the integrand tends to zero as t ---> -4-.o (it will then 
decrease exponentially rapidly as It I increases), which is equivalent to Hi(Y) = 0. In the present case 
this condition is satisfied because/-/1 = xy - xj, and y = 0, jp = 0 along the orbit T. 

It is well known [13, Chap. 5] that i fP ' (a)  ~ 0, then for small e # 0 the perturbed problem is analytically 
non-integrable. It can be shown [13] that the function P is periodic in a, and therefore has critical points 
(for example a maximum and a minimum). It turns out that if the Poincar~ function has a non-degenerate 
critical point, then for small e # 0 the perturbed system has a transverse doubly asymptotic orbit (at a 
fixed value of the energy), in whose neighbourhood there is a domain of quasi-random (chaotic) 
behaviour. 

In the case under consideration,/-/1 = - K  = const on the segments An. Let us assume (to simplify 
the notation) that the motion takes place at unit velocity. Then 

? = - E K A  (1.4) 
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where Kn is the angular momentum along the segment An and In is the length of the segment. Here  and 
throughout the rest of the paper, unless otherwise stated, summation is performed from n = --** to 
n ---- -I-oo. 

2. P O I N C A R I S ' S  S E R I E S  

We first observe that the product Knln is equal to 2Sn, where S. is the oriented area of  the shaded 
triangle shown in Fig. 1 for the ellipse (0.1): x = a cos tO, y = b sin q~. Let  {gn}, n e Z be the sequence 
of impact points along a doubly asymptotic orbit oa. The following formulae are known [5] 

~,--2arctg~,. q).+l=(2arctg~n+l)+/t. ~,=~."tga. ~,+l=~. 

Consequently 

2S. = ab(cos tp. sin q~.+! - sin ~p. cos 9.+1 ) 

Using the formulae 

_ 1-g  
Costp. - 1 - ' ~ "  n , sintp. = l+~2n 

we obtain a formula tor  the nth term of the series (1.4) 

2(~ - l)~n ( ~ 2  + 1) 

Finally, we obtain ~m explicit expression for the Poincar6 function, expressed as a series 

~," sin ot cosOt(cos 2 a + ~,2,+J sin 2 or) 
.P(ot) = 2ab(1 - ~.)~ (c°s 2 a + ~2n sin 2 00(cos 2 ot + ~2n+2 sin 2 a )  (2,1) 

We will show that P(a)  ~ O. Indeed, P(0) = 0, but P0z/4) < 0, since all the terms of the series (2.1) 
are negative (we are using the fact that ~ > 1). Consequently, by Poincar6's theorem, for small e ~ 0 
a rotating elliptical billiard is a non-integrable dynamical system. 

3. C A L C U L A T I N G  T H E  SUM OF P O I N C A R I ~ ' S  S E R I E S  

Expanding the general term of the series (2.1) as a sum of simple fractions, one can reduce the Poincar6 
function to the form 

2ab(l - Z.) r.-. e"Xsinacosa  _ kenx sin a c o s a  ] 
P(O:) = 1 + ~, L 2" cos 2 a + e 2n ~ sin 2 a + 2., cos2 Ct+ ~,2e2n ~ sin 20t J 

Note that the sums of these two infinite series are equal, since ~, = e nx and n takes all integer values 
from --~ to +0-. Therefore,  after some reduction, we get 

Fig. 1. 
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P ( a ) =  4ab(1 - ~,)sin acosct  e xx/t2n) 
l + k  Y.f(27tn), f ( x ) =  cos2ct+eXtlnsin2ct  

If sintx = 0, then P = 0. If s ins # 0, then f(x) approaches zero at an exponential rate as Ix I ~ oo, 

and one can apply the Poisson summation formula [14] 

E f (2xn )  = - -~Z~ f ( x ) e - i nXdx  

These improper integrals can be evaluated by using residues. As a result we obtain the following 
formula for the Poincar6 function 

4nabO ~.)r~+2** e - F n / x  (ng cos2 cx'~] 
P ( a , =  x ( l + ~ ' ~ L  ~ '  l + e - 2 F " "  c ° s t " x " l n ~ J J  (3.1) 

The Poisson summation formula has been used before [7] to simplify Poincar6's series. 
We now compare this series with the Fourier series of the Jacobian elliptic function dn (the delta 

amplitude) [14] 

¢ 
hi_ n=l l + q  2n Z , q = e x p  

where K is the complete elliptic integral of the second kind and K" is the complete integral with 
complementary modulus k' = (1 - k2) r/2. 

We have to put q = e -~2/x < 1 in (3.1). For this value of one can evaluate the modulus k of the elliptic 
function and the value of the complete elliptic integral K. After that the Poincar6 function (3.1) can 
be expressed explicitly in terms of the delta amplitude 

K ,  cos 2 ¢t P(tx) = 4ab(1 -  ~,)K dn z, z = - -  
"~(1 + ~.) x in sin2 

Since (dn z)'  = - k  2 sn z cn z, the critical points of P are determined from the equalities 

1 . COS 2 0 ~  
- ~ = m ( 3 . 2 )  "t In sin2 

where m are integers. Thus, over the interval (0, n) there are infinitely many critical values of a (as 
assumed according to the general theory). Since z is a monotone function of ct in the intervals (0, n/2) 
and (~/2, ~), all the critical points are non-degenerate. For m = 0 formula (3.2) gives two values: ct = 
~/4 and ¢t = 3n/4. 
Corresponding to these are two doubly asymptotic orbits of the unperturbed problem which are 
symmetric about the y axis. At small values of e > 0 they become transverse doubly asymptotic orbits 
of the perturbed system, indicating, in particular, the existence of zones of quasi-random motion. 

I wish to thank S. V. Bolotin for bringing the problem to my attention. 
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